3.2057 \(\int \frac{1}{\sqrt{1-2 x} (2+3 x)^4 (3+5 x)^2} \, dx\)

Optimal. Leaf size=160 \[ -\frac{1676975 \sqrt{1-2 x}}{7546 (5 x+3)}+\frac{7585 \sqrt{1-2 x}}{343 (3 x+2) (5 x+3)}+\frac{145 \sqrt{1-2 x}}{98 (3 x+2)^2 (5 x+3)}+\frac{\sqrt{1-2 x}}{7 (3 x+2)^3 (5 x+3)}-\frac{1051695}{343} \sqrt{\frac{3}{7}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )+\frac{32750}{11} \sqrt{\frac{5}{11}} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right ) \]

[Out]

(-1676975*Sqrt[1 - 2*x])/(7546*(3 + 5*x)) + Sqrt[1 - 2*x]/(7*(2 + 3*x)^3*(3 + 5*x)) + (145*Sqrt[1 - 2*x])/(98*
(2 + 3*x)^2*(3 + 5*x)) + (7585*Sqrt[1 - 2*x])/(343*(2 + 3*x)*(3 + 5*x)) - (1051695*Sqrt[3/7]*ArcTanh[Sqrt[3/7]
*Sqrt[1 - 2*x]])/343 + (32750*Sqrt[5/11]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/11

________________________________________________________________________________________

Rubi [A]  time = 0.0609598, antiderivative size = 160, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {103, 151, 156, 63, 206} \[ -\frac{1676975 \sqrt{1-2 x}}{7546 (5 x+3)}+\frac{7585 \sqrt{1-2 x}}{343 (3 x+2) (5 x+3)}+\frac{145 \sqrt{1-2 x}}{98 (3 x+2)^2 (5 x+3)}+\frac{\sqrt{1-2 x}}{7 (3 x+2)^3 (5 x+3)}-\frac{1051695}{343} \sqrt{\frac{3}{7}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )+\frac{32750}{11} \sqrt{\frac{5}{11}} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right ) \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[1 - 2*x]*(2 + 3*x)^4*(3 + 5*x)^2),x]

[Out]

(-1676975*Sqrt[1 - 2*x])/(7546*(3 + 5*x)) + Sqrt[1 - 2*x]/(7*(2 + 3*x)^3*(3 + 5*x)) + (145*Sqrt[1 - 2*x])/(98*
(2 + 3*x)^2*(3 + 5*x)) + (7585*Sqrt[1 - 2*x])/(343*(2 + 3*x)*(3 + 5*x)) - (1051695*Sqrt[3/7]*ArcTanh[Sqrt[3/7]
*Sqrt[1 - 2*x]])/343 + (32750*Sqrt[5/11]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/11

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{1-2 x} (2+3 x)^4 (3+5 x)^2} \, dx &=\frac{\sqrt{1-2 x}}{7 (2+3 x)^3 (3+5 x)}+\frac{1}{21} \int \frac{75-105 x}{\sqrt{1-2 x} (2+3 x)^3 (3+5 x)^2} \, dx\\ &=\frac{\sqrt{1-2 x}}{7 (2+3 x)^3 (3+5 x)}+\frac{145 \sqrt{1-2 x}}{98 (2+3 x)^2 (3+5 x)}+\frac{1}{294} \int \frac{7920-10875 x}{\sqrt{1-2 x} (2+3 x)^2 (3+5 x)^2} \, dx\\ &=\frac{\sqrt{1-2 x}}{7 (2+3 x)^3 (3+5 x)}+\frac{145 \sqrt{1-2 x}}{98 (2+3 x)^2 (3+5 x)}+\frac{7585 \sqrt{1-2 x}}{343 (2+3 x) (3+5 x)}+\frac{\int \frac{596595-682650 x}{\sqrt{1-2 x} (2+3 x) (3+5 x)^2} \, dx}{2058}\\ &=-\frac{1676975 \sqrt{1-2 x}}{7546 (3+5 x)}+\frac{\sqrt{1-2 x}}{7 (2+3 x)^3 (3+5 x)}+\frac{145 \sqrt{1-2 x}}{98 (2+3 x)^2 (3+5 x)}+\frac{7585 \sqrt{1-2 x}}{343 (2+3 x) (3+5 x)}-\frac{\int \frac{24644085-15092775 x}{\sqrt{1-2 x} (2+3 x) (3+5 x)} \, dx}{22638}\\ &=-\frac{1676975 \sqrt{1-2 x}}{7546 (3+5 x)}+\frac{\sqrt{1-2 x}}{7 (2+3 x)^3 (3+5 x)}+\frac{145 \sqrt{1-2 x}}{98 (2+3 x)^2 (3+5 x)}+\frac{7585 \sqrt{1-2 x}}{343 (2+3 x) (3+5 x)}+\frac{3155085}{686} \int \frac{1}{\sqrt{1-2 x} (2+3 x)} \, dx-\frac{81875}{11} \int \frac{1}{\sqrt{1-2 x} (3+5 x)} \, dx\\ &=-\frac{1676975 \sqrt{1-2 x}}{7546 (3+5 x)}+\frac{\sqrt{1-2 x}}{7 (2+3 x)^3 (3+5 x)}+\frac{145 \sqrt{1-2 x}}{98 (2+3 x)^2 (3+5 x)}+\frac{7585 \sqrt{1-2 x}}{343 (2+3 x) (3+5 x)}-\frac{3155085}{686} \operatorname{Subst}\left (\int \frac{1}{\frac{7}{2}-\frac{3 x^2}{2}} \, dx,x,\sqrt{1-2 x}\right )+\frac{81875}{11} \operatorname{Subst}\left (\int \frac{1}{\frac{11}{2}-\frac{5 x^2}{2}} \, dx,x,\sqrt{1-2 x}\right )\\ &=-\frac{1676975 \sqrt{1-2 x}}{7546 (3+5 x)}+\frac{\sqrt{1-2 x}}{7 (2+3 x)^3 (3+5 x)}+\frac{145 \sqrt{1-2 x}}{98 (2+3 x)^2 (3+5 x)}+\frac{7585 \sqrt{1-2 x}}{343 (2+3 x) (3+5 x)}-\frac{1051695}{343} \sqrt{\frac{3}{7}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )+\frac{32750}{11} \sqrt{\frac{5}{11}} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )\\ \end{align*}

Mathematica [A]  time = 0.092276, size = 101, normalized size = 0.63 \[ -\frac{\sqrt{1-2 x} \left (45278325 x^3+89054820 x^2+58335165 x+12724912\right )}{7546 (3 x+2)^3 (5 x+3)}-\frac{1051695}{343} \sqrt{\frac{3}{7}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )+\frac{32750}{11} \sqrt{\frac{5}{11}} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[1 - 2*x]*(2 + 3*x)^4*(3 + 5*x)^2),x]

[Out]

-(Sqrt[1 - 2*x]*(12724912 + 58335165*x + 89054820*x^2 + 45278325*x^3))/(7546*(2 + 3*x)^3*(3 + 5*x)) - (1051695
*Sqrt[3/7]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/343 + (32750*Sqrt[5/11]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/11

________________________________________________________________________________________

Maple [A]  time = 0.014, size = 91, normalized size = 0.6 \begin{align*} 972\,{\frac{1}{ \left ( -6\,x-4 \right ) ^{3}} \left ({\frac{7565\, \left ( 1-2\,x \right ) ^{5/2}}{4116}}-{\frac{11455\, \left ( 1-2\,x \right ) ^{3/2}}{1323}}+{\frac{7711\,\sqrt{1-2\,x}}{756}} \right ) }-{\frac{1051695\,\sqrt{21}}{2401}{\it Artanh} \left ({\frac{\sqrt{21}}{7}\sqrt{1-2\,x}} \right ) }+{\frac{250}{11}\sqrt{1-2\,x} \left ( -2\,x-{\frac{6}{5}} \right ) ^{-1}}+{\frac{32750\,\sqrt{55}}{121}{\it Artanh} \left ({\frac{\sqrt{55}}{11}\sqrt{1-2\,x}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2+3*x)^4/(3+5*x)^2/(1-2*x)^(1/2),x)

[Out]

972*(7565/4116*(1-2*x)^(5/2)-11455/1323*(1-2*x)^(3/2)+7711/756*(1-2*x)^(1/2))/(-6*x-4)^3-1051695/2401*arctanh(
1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)+250/11*(1-2*x)^(1/2)/(-2*x-6/5)+32750/121*arctanh(1/11*55^(1/2)*(1-2*x)^(
1/2))*55^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 2.24429, size = 197, normalized size = 1.23 \begin{align*} -\frac{16375}{121} \, \sqrt{55} \log \left (-\frac{\sqrt{55} - 5 \, \sqrt{-2 \, x + 1}}{\sqrt{55} + 5 \, \sqrt{-2 \, x + 1}}\right ) + \frac{1051695}{4802} \, \sqrt{21} \log \left (-\frac{\sqrt{21} - 3 \, \sqrt{-2 \, x + 1}}{\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}}\right ) + \frac{45278325 \,{\left (-2 \, x + 1\right )}^{\frac{7}{2}} - 313944615 \,{\left (-2 \, x + 1\right )}^{\frac{5}{2}} + 725394915 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} - 558527921 \, \sqrt{-2 \, x + 1}}{3773 \,{\left (135 \,{\left (2 \, x - 1\right )}^{4} + 1242 \,{\left (2 \, x - 1\right )}^{3} + 4284 \,{\left (2 \, x - 1\right )}^{2} + 13132 \, x - 2793\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2+3*x)^4/(3+5*x)^2/(1-2*x)^(1/2),x, algorithm="maxima")

[Out]

-16375/121*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 1051695/4802*sqrt(21)*
log(-(sqrt(21) - 3*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) + 1/3773*(45278325*(-2*x + 1)^(7/2) - 313944
615*(-2*x + 1)^(5/2) + 725394915*(-2*x + 1)^(3/2) - 558527921*sqrt(-2*x + 1))/(135*(2*x - 1)^4 + 1242*(2*x - 1
)^3 + 4284*(2*x - 1)^2 + 13132*x - 2793)

________________________________________________________________________________________

Fricas [A]  time = 1.63037, size = 522, normalized size = 3.26 \begin{align*} \frac{78632750 \, \sqrt{11} \sqrt{5}{\left (135 \, x^{4} + 351 \, x^{3} + 342 \, x^{2} + 148 \, x + 24\right )} \log \left (-\frac{\sqrt{11} \sqrt{5} \sqrt{-2 \, x + 1} - 5 \, x + 8}{5 \, x + 3}\right ) + 127255095 \, \sqrt{7} \sqrt{3}{\left (135 \, x^{4} + 351 \, x^{3} + 342 \, x^{2} + 148 \, x + 24\right )} \log \left (\frac{\sqrt{7} \sqrt{3} \sqrt{-2 \, x + 1} + 3 \, x - 5}{3 \, x + 2}\right ) - 77 \,{\left (45278325 \, x^{3} + 89054820 \, x^{2} + 58335165 \, x + 12724912\right )} \sqrt{-2 \, x + 1}}{581042 \,{\left (135 \, x^{4} + 351 \, x^{3} + 342 \, x^{2} + 148 \, x + 24\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2+3*x)^4/(3+5*x)^2/(1-2*x)^(1/2),x, algorithm="fricas")

[Out]

1/581042*(78632750*sqrt(11)*sqrt(5)*(135*x^4 + 351*x^3 + 342*x^2 + 148*x + 24)*log(-(sqrt(11)*sqrt(5)*sqrt(-2*
x + 1) - 5*x + 8)/(5*x + 3)) + 127255095*sqrt(7)*sqrt(3)*(135*x^4 + 351*x^3 + 342*x^2 + 148*x + 24)*log((sqrt(
7)*sqrt(3)*sqrt(-2*x + 1) + 3*x - 5)/(3*x + 2)) - 77*(45278325*x^3 + 89054820*x^2 + 58335165*x + 12724912)*sqr
t(-2*x + 1))/(135*x^4 + 351*x^3 + 342*x^2 + 148*x + 24)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2+3*x)**4/(3+5*x)**2/(1-2*x)**(1/2),x)

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Giac [A]  time = 2.47164, size = 188, normalized size = 1.18 \begin{align*} -\frac{16375}{121} \, \sqrt{55} \log \left (\frac{{\left | -2 \, \sqrt{55} + 10 \, \sqrt{-2 \, x + 1} \right |}}{2 \,{\left (\sqrt{55} + 5 \, \sqrt{-2 \, x + 1}\right )}}\right ) + \frac{1051695}{4802} \, \sqrt{21} \log \left (\frac{{\left | -2 \, \sqrt{21} + 6 \, \sqrt{-2 \, x + 1} \right |}}{2 \,{\left (\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}\right )}}\right ) - \frac{625 \, \sqrt{-2 \, x + 1}}{11 \,{\left (5 \, x + 3\right )}} - \frac{9 \,{\left (68085 \,{\left (2 \, x - 1\right )}^{2} \sqrt{-2 \, x + 1} - 320740 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} + 377839 \, \sqrt{-2 \, x + 1}\right )}}{2744 \,{\left (3 \, x + 2\right )}^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2+3*x)^4/(3+5*x)^2/(1-2*x)^(1/2),x, algorithm="giac")

[Out]

-16375/121*sqrt(55)*log(1/2*abs(-2*sqrt(55) + 10*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 1051695/4802
*sqrt(21)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) - 625/11*sqrt(-2*x + 1)/(
5*x + 3) - 9/2744*(68085*(2*x - 1)^2*sqrt(-2*x + 1) - 320740*(-2*x + 1)^(3/2) + 377839*sqrt(-2*x + 1))/(3*x +
2)^3